
Closer to Size: A Preliminary Investigation into the Predictability

of Closing Auction Sizes in US Equities

Allison Bishop Adele Shahi Yuqian Zhang

Abstract

We describe Proof Trading’s initial research into the predictability of closing auction sizes. This is a
first step in our process of designing an algo for trading into the close.

1 Introduction

The US equities market can sometimes feel like a procrastinator’s paradise. It wakes up sleepily around
9:30 am, shuffles some papers around for several hours, takes a bit of an unofficial lunch break, and then
snaps to attention for an action-packed half hour or so leading up to the closing bell at 4 pm. The day
typically ends with a heavy exclamation mark - a closing auction that represents a considerable fraction
of the total activity over the day. The closing auction is a structurally unique opportunity for buyers and
sellers to convene in time and space, like high school cliques being forced together for a school assembly.

The closing auction can provide a fair amount of cover for large trades that might otherwise move
the market. But misjudging the amount of cover on any particular day can lead a trader to expose too
much interest and move the market against themselves, or to expose too little and miss an opportunity
to complete more of their order while staying under the radar. In either direction, mis-estimation can
be costly.

There are many reasons to suspect, though, that decent predictions of closing auction size are possible.
First, historical data is widely available across symbols and across years, making it easy to test out various
prediction strategies and compare their outputs to the true outcomes. Second, the same reasons that
may lead someone to trade in the close may lead them to trade also throughout the day and/or in the
opening auction, meaning that measurements of trading activity earlier in the day may be correlated
with closing auction volumes.

In this paper, we present our initial work on developing and evaluating models that attempt to predict
closing auction sizes as a function of historical data from previous days as well as measurements that can
be made earlier in the same trading day. Since we know the true close sizes in a historical data, this can
be approached as a classic supervised learning problem. We will:

� Explore features that may be helpful in prediction

� Explore metrics for grading the quality of our predictions

� Explore function forms for expressing our prediction as a function of our (hopefully) predictive
variables

� Explore algorithms for choosing specific functions that score well on our chosen metrics

After all putting all of this together, we will have arrived at an initial model. There is certainly room
for future improvement though, as our choices at each of these steps can affect our outcomes and should
be continually revisited.

While one can follow this template for all supervised machine learning problems, which steps are the
most difficult or the most crucial often varies as a function of the underlying data and the underlying
context. In many financial data problems, finding features that are robustly meaningful is often a
challenge due to high levels of noise. As we will detail later, we find that not to be the case here.
Somewhat to our surprise, we quickly found a few different basic features that were highly correlated
to closing auction sizes. But the choices of metrics, function forms, and algorithms were a bit more
challenging than usual, as we saw good reasons to deviate from typical defaults. Ultimately though, we
arrive at what we think is a relatively simple and explainable model that robustly outperforms a default

1

baseline of using historical averages over recent days (e.g. the average of close sizes in the same symbol
over the previous 20 days).

We are certainly not the first people to investigate this problem. Far from it! Closing size prediction
is the sort of the thing that nearly every trader, every broker, every proprietary trading firm, and every
hobbyist has their own take on. Most of those takes are not disclosed as part of the public scientific
record. As with many of our quantitative research efforts at Proof, we chose to start here with a clean
slate, investigating the problem from first principles from a machine learning perspective, rather than
scouring the financial literature. Since we cannot know how our findings here compare to undisclosed
proprietary solutions, we do not make any claims of novelty. But we do think what we lay out here is a
framework that others may find understandable and useful, as it is derived through a systematic process
and can be adapted at various points to fit more specific goals in more specific contexts.

2 Data Selection and Feature Exploration

In any data science problem, the first thing we have to decide is: what is our data set? Since we expect
our data to be noisy, we will probably want to pull a lot of historical data for building our models. We
will also want to cover important seasonal events, such as monthly options expirations, quarterly earnings
releases, etc. For this reason, we choose to pull historical data from all of 2022 for 1000 symbols as our
training set. The 1000 symbols were chosen according to top notional value traded. Data for the same
symbols from 2023 will be used to test our final model candidate, but not used during training. This
helps us avoid over-fitting as well as confirming that any patterns we find stay stable enough over time
to remain predictive on later data.

After pulling historical training data, we can take a look to get a basic sense of how close sizes behave.
Here is a scatter plot of the closing auction sizes for BAC over the year 2022:

There’s not too much we can see by eye here, other than the fact that there is a fair amount of noise
and some noticeable outliers floating above the rest of the data. A natural question is: do these outliers
occur on special known event dates, like days when earnings are released? We’ll enrich our data with
columns that mark special events in order to find out.

2.1 Special events

There are several different kinds of events that can be expected to affect closing auction sizes. Options
expiry days, for example, are pre-scheduled events that may lead to increased trading. There are monthly
expirations on the third Friday of every month, as well as quarterly expirations. Some of these expiration
days are called “triple witch” or “quadruple witch” events because multiple things are happening at once:
e.g. stock options, index futures, and index options all expiring on the same date. Since option expiry
events are scheduled in advance, we can mark them in our data set and potentially use this information
in making our predictions. For now, we will do this in a fairly simple way. We’ll create a binary feature
called “IsExpiry” that is equal 1 when it is an option expiry day and equal to 0 when it is not. For now,
all of the different kinds of expirations (monthly, quarterly) will be grouped together as “1” values.

Earnings releases are another category of events that we would expect to heavily affect trading
volumes. For each stock, quarterly earnings releases are scheduled in advance, so we might expect levels
of activity to be impacted both before and after such announcements. For now, we will consider a basic
binary feature called “AfterEarnings” that is equal to 1 on the first day of trading after an earnings
announcement, and equal to 0 otherwise.

2

A third important category of events are index rebalances. The Russell Reconstitution is a yearly
event that finishes on a particular day, while the S&P and MSCI indexes rebalance four times a year.
For now, we create a simple feature called “IsRebalance” that is equal to 1 on rebalance days and equal
to 0 otherwise.

Here is a color-coded scatter plot for the same BAC 2022 data with these kind of events identified.
The “multiple” category indicates days that were special in more than one way.

For BAC at least, it seems that monthly options expirations and earnings releases in 2022 were not
a big deal in terms of affecting closing auction sizes, but rebalance and multiple event days were. In
2022, the multiple event days were the four days when S&P rebalance coincided with a witch event (so
we might suspect here that the “IsRebalance” variable is the most relevant one for BAC).

We can see somewhat different effects here for different symbols. Here is a color-coded plot for AAPL
closing sizes for 2022:

Here we see that quarterly expirations and earnings releases may be having a more meaningful impact
on AAPL closing sizes in this time period. It is important to keep in mind then, that our indicator
variables for special events may have very different relevance for different symbols. This should inform
how we ultimately incorporate them into our models.

2.2 Symbol types

We might also expect trading dynamics around the close to be different for ETFs vs. common stocks.
Here is what closing sizes looked like for SPY in 2022, for example:

3

We notice that the scale here for the y-axis is smaller than BAC and AAPL, despite the fact that
volume in SPY over the day is typically much higher than volume in BAC and AAPL. We might expect
a general muting of close sizes in ETFs vs. common stocks, as well as a decreased or differing impact of
special events.

2.3 Historical and intra-day features

A common basic prediction strategy is to use a rolling average of close sizes for recent days in the same
symbol. For example, we might predict that today’s closing auction in BAC will be the average size of
the last 20 or 30 days of closing sizes for BAC. It is worth noting that this baseline already has several
desirable features. For one, it yields predictions that are customized by symbol and dynamic over time,
meaning that the predictions adjust higher when closing sizes in a symbol trend higher and lower when
they trend lower (though with a little lag due to the length of trailing window). However, averages are
also volatile and can be unduly swayed by outliers. One approach to mitigating this would be to remove
special event days from the average calculation and/or exclude numbers that are out of line with their
temporal peers. A simpler approach is to use medians instead of averages, since medians are inherently
more robust. We will try both historical averages and medians as baseline predictors and features in our
models later once we have decided on a metric for grading their respective performance.

Beyond this basic trailing window approach, our selection of features is very open-ended. There are
an endless number of things we can measure about historical and intra-data that we might guess are
somehow related to closing auction sizes. A kitchen-sink approach would be to collect as many of them as
possible and then throw them all into the mix later when we consider functional forms and model-fitting.
However, such an approach would have us starting with a fairly high level of complexity even as we try
to fit basic functional forms. Having too many candidate features to start with isn’t a big problem when
you have a lot of clean and non-noisy data to help you sort out later which features are really needed,
but when data is sparse and/or noisy, you may be setting yourself up for over-fitting and confusion.
Since financial data tends to be extremely noisy, we will take a more conservative approach and pre-vet
potential features by looking at their correlation (or lack thereof) with the phenomenon we are trying to
predict. In our case, this means checking if a feature is meaningfully correlated with close sizes in a way
that is likely to be valuable in the context of a prediction model. This is naturally a heuristic, and could
mean we end up discarding features that aren’t directly correlated with our prediction target, but would
combine with other features in subtle ways to improve predictions. Nonetheless, we think that limiting
ourselves to a small feature set that is clearly correlated with our prediction target is a good way to set
us up for success in building an initial model that we can then improve and enhance iteratively.

2.3.1 An opening size feature

We might suspect that there is some correlation between opening auction sizes and closing auction sizes.
Days where opening auctions are particularly large or small might also tend to be days where closing
auctions are particularly large or small. This kind of correlation is typically captured by a correlation
coefficient. The Pearson correlation coefficient, for example, is defined as follows for two random variables
X and Y :

Pearson(X,Y) := E
[
(X − µX)(Y − µY)

σXσY

]
.

There are several things going on in this expression that we should stop and absorb. First, µX and
µY denote the average values of X and Y respectively, so subtracting these effectively re-centers X and
Y around 0. Next, σX and σY denote the standard deviations of X and Y respectively, so dividing by
these effectively scales each of X and Y to have standard deviation 1. It may be revealing to write the
whole expression a bit differently. We can define:

X̃ :=
X − µX

σX
,

Ỹ :=
Y − µY

σY
.

Then we have:
Pearson(X,Y) = Pearson(X̃, Ỹ) = E[X̃Ỹ].

The main point here is that a product of two zero-centered variables captures what we intuitively mean
by correlation: if it tends to be positive, than both variables tend to agree in sign, and if it tends to be

4

negative, then both variables tend to disagree in sign. If the variables are independent, we expect them
to agree and disagree in sign in roughly equal measure, and the correlation coefficient should come out
to be close to 0. The correction for the standard deviations (the dividing by σXσY), doesn’t change the
sign of the correlation coefficient, but is helpful for interpreting its magnitude. With this correction, the
Pearson coefficient is always in the range from -1 to 1, with values near -1 representing strong negative
(a.k.a. inverse) correlation, values near 1 representing strong positive correlation, and values near 0
representing a lack of correlation.

Of course, we don’t actually know what our underlying random variables are, we only have samples
of them (e.g. samples of opening auction and closing auction sizes). So what we’re actually doing when
we compute a Pearson correlation coefficient is averaging over the samples that we have. More precisely,
if we have pairs of (evenly weighted) samples for X and Y , say (x1, y1), . . . , (xn, yn), we compute:

µX :=
1

n
∗

n∑
i=1

xi, σX :=

√√√√(1

n

n∑
i=1

x2
i

)
− µ2

X

µY :=
1

n
∗

n∑
i=1

yi, σY :=

√√√√(1

n

n∑
i=1

y2
i

)
− µ2

Y

Pearson(X,Y) =

n∑
i=1

(xi − µX)(yi − µY)

σXσY

Writing it out this way, it is clear that the Pearson correlation is an average over empirical data and
so it is vulnerable to outliers. We might think that the standard deviation correction protects us from
this, but it doesn’t really. Just because we’ve scaled our data does not make it Gaussian or any other
well-behaved shape, and our calculation here can be heavily impacted by small sets of extremal values.
The Pearson coefficient is a good test on its own when variables are relatively well-behaved and have a
somewhat linear relationship between them, but on noisy data it can be unreliable.

A more robust version is the Spearman correlation coefficient, which looks at the ranks of values for
X and Y , rather than the values themselves. To compute a Spearman coefficient, we sort the values
{xi} from least to greatest, and replace each value with its rank in this sorting. For example, values
of {1001, 342, 56077, 2455} would be replaced by {2, 1, 4, 3}. We do the same for the values {yi}. We
then compute a Pearson coefficient on the respective ranks of X and Y values. The fact that we are
only looking at ranks instead of raw values mutes the effects of outliers and allows us to better capture
relationships between X and Y that may be highly nonlinear. Because of these advantages, we prefer to
use Spearman coefficients to test for correlations in our data.

If we want to test for correlation between the opening and closing auction sizes in a single symbol,
directly computing a Spearman coefficient with X representing close sizes and Y representing open sizes
could make sense, but there are a few pitfalls we can anticipate. One is that volume might holistically
trend up or down over time, affecting both open and close sizes. This would represent a correlation, but
not a particularly helpful one. This kind of trend is already captured in using historical averages over
the last 20 days, for example, and so adding open sizes as a feature would not add much value if this is
the only kind of correlation present. Another issue is that for a single symbol over the span of a year,
we only have about 250 data points. This is not a lot of data, so we might get some strange results by
chance. It’s also not really clear what we should do to interpret a set of 1000 correlation coefficients
computed symbol by symbol. Surely some will be negative, some will be positive, some will be large,
some will be small, etc. It’s not at all clear what conclusions we can draw overall this way.

To address the potential influence of volume trends over time, we can use the ratios of open and close
sizes over their historical averages or medians rather than the raw sizes themselves. [We will use medians
for their greater robustness, but averages would probably be fine too.] Letting OpenSize denote the size
of the opening auction and OpenHist denote a historical median of opening auction sizes over the prior
20 days, we define the feature:

OpenF :=
OpenSize

OpenHist
.

Analogously, we define:

CloseF :=
CloseSize

CloseHist
.

Dividing by a trailing historical benchmark should help mute volume trends over time and isolate the
kind of day-to-day correlation between open and close sizes that we are more interested in. It also makes

5

it reasonable to aggregate data across symbols, now that things are a bit more apples-to-apples. We can
now get a rough sense of whether open auction sizes might have any predictive power with respect to
close sizes by computing a single Spearman coefficient over all of our data, treating OpenF as variable
X and CloseF as variable Y . However, we might still worry that any correlation we find could simply
be due to special event days causing both OpenF and CloseF values to be larger than usual. So we’ll
exclude special days (as indicated by our AfterEarnings, IsExpiry, and IsRebalance variables) from our
computation. The resulting Spearman coefficient is 0.17 if we weight data points equally or 0.18 if we
weight them proportionally to the notional value traded for each symbol/day.

This looks promising! There seems to be a positive correlation! But there is still a remaining issue.
We can see the number is positive, but is it meaningfully positive? Could it be explained by chance
rather than an underlying relationship between the variables? To get a sense of this, we will use Monte
Carlo simulations. In each simulation, we will randomly and independently permute the ranks of all of
OpenF and CloseF values across our data set and will then compute a Spearman coefficient again. We’ll
then see what fraction of our simulations yield a correlation coefficient with an absolute value at least as
large as we originally observed. Doing this for 100 simulations, the fraction is 0 (regardless of whether we
use uniform or notional value weights). This is strong evidence that OpenF can be a helpful feature in
closing size prediction. Unsurprisingly, the correlation coefficient increases even further (to around 0.24)
if we remove ETFs from our data set (since they may have systematically differing auction behaviors).

2.3.2 A late-in-the-day volume feature

We might also suspect that volumes throughout the day are correlated with closing auction sizes. In
particular, we’ll consider volume traded between 9:30 and 3:45 pm. We’ll call this LateSize, as it
represents the volume traded up to this late point in the day. Similar to our open size feature, we then
define:

LateF :=
LateSize

LateHist
,

where LateHist represents a historical median of the LateSize quantity over the prior 20 days.
We will screen this LateF for correlation with closing sizes in the same way that we screened the

OpenF feature. We’ll compute a Spearman coefficient for LateF and CloseF over the non-special days
in our data, and use Monte Carlo simulations to get a sense of whether its magnitude is meaningful.
The resulting correlation coefficient is about 0.30, a greater magnitude than observed across any of 100
Monte Carlo simulations. Like in the case of OpenF , this coefficient is relatively insensitive to weighting
data points equally or by notional value, and it increases when we exlude ETFs from our data set. (In
this case, it increases to about 0.36.)

2.3.3 Imbalance feed features?

We would naturally suspect that features of imbalance feeds could help in predicting closing auction sizes.
However, these feeds are only available very close to the time of the auction, and so using such features
may be prohibitive, depending on the intended application. For MOC and LOC order types (a.k.a.
“market on close” and “limit on close”), orders have to be submitted before the imbalance feeds begin
releasing any information. Such feeds are also prohibitively expensive to purchase real-time access to, as
they are not part of the SIP feeds at this time and are only available through proprietary exchange data
products. Proof Trading does not purchase imbalance feeds currently, and hence we will keep them out of
scope for this initial investigation. We intend to purchase some historical data of imbalance feeds in the
future in order to assess how much additional predictive value they might represent for our developing
use cases. To perform such an assessment, we will need to have a strong baseline for how well closing
sizes can be predicted from our existing data, so the work here represents an important precursor, even
for use cases where imbalance feeds would be actionable.

3 Choosing a prediction target and a metric of success

In many applications of supervised learning, this part of the process is fairly obvious. And at a first
glance, it may seem so here. We know what we want to predict: the size of the closing auction. Since
this is a numerical variable, there is a standard choice for a metric of success: mean-squared error.

6

If we have a sequence of close sizes x1, . . . , xn and a corresponding sequence of predictions y1, . . . , yn,
we can compute the mean-squared error as:

MSE :=

∑n
i=1(xi − yi)

2

n
.

This is a convenient metric for many reasons. The squaring is a clean way to cost errors of both under
and over-shooting, and it produces a nice continuous, differentiable, and convex function that is relatively
easy to minimize when it comes to fitting functional forms. The summation composes well over different
kind of data points (in our case, different symbols for example), and the averaging can be easily tweaked
to reflect weights if we care more about some data points than others:

MSE with weights :=

n∑
i=1

(xi − yi)
2wi,

where wi values here represent the desired weights.
Despite all of these advantages, MSE is probably a poor choice of metric for close size prediction.

The reason lies in the nature of the most extremal points. As we have seen in the plots above, close
sizes tend to bounce around somewhat wildly, and the outliers can be extreme. We might hope to sift
out some of these outliers due to our flagging of special event days, but it would be overly optimistic to
assume that all outliers can be easily explained or anticipated. Here for example is a plot of the closing
sizes for CVS over 2022:

If we use a metric like MSE to fit models on data like this, it will force the models to really try to
predict just how high each abnormally high value is going to be. Failing to do so will incur very large
penalties of (xi − yi)

2 for times when xi is huge and yi is middling. These big failures are amplified by
squaring, and so will likely become the primary contributors to the overall mean squared error. But it is
probably an incredibly difficult task to predict exactly how high a high volume close is going to be! So
we would be setting our models up for failure - telling them that what’s most important is actually the
thing they are least likely to be able to do. As a result, we’d probably get a volatile mess of over-fitting,
rather than making steady and robust improvements in prediction holistically.

We could try to mitigate this by using mean absolute error, which simply takes an absolute value
instead of squaring. This probably doesn’t go far enough though. A better choice for our scenario is
something like mean absolute percentage error (MAPE). For a sequence of close sizes x1, . . . , xn and a
corresponding sequence of predictions y1, . . . , yn, the mean absolute percentage error is defined as:

MAPE :=
1

n

n∑
i=1

|xi − yi|
xi

.

With this metric, we’d be looking at error as a percentage of the true value xi, a change which powerfully
controls the influence of data points where xi is large, since we are now dividing a potentially large error
by a large denominator.

But a related problem still remains - what about outliers where xi is unusually small? In fact, our
data set contains 36 points where the close size was exactly 1 (mostly for BRKA, one for IMPP), and 455
points where the close size is less than 1000 (these occurred for 8 symbols). While we could investigate
the nature of such low outliers and try to filter them out in some principled way, it’s cleaner if we can
simply choose a metric that doesn’t place undue attention on trying to predict them. MAPE will blow up
when xi is suddenly small - a prediction of yi = 100 for example when xi = 1 will contribute a whopping

7

|1−100|
1

= 99 to our error sum. This probably doesn’t reflect our actual goals. After all, if the closing
auction ends up being abnormally small, it’s probably because we didn’t manage to trade much in it. In
this case, we may not care too much about our prediction being larger, because we didn’t end up trading
too much anyway.

We don’t know of a standard metric that seamlessly corrects for this, so we propose one of our own
that we will call MAREγ. It stands for mean absolute ratio error - with a parameter γ. We pronounce
it as “Mary” because, well, statistics could use a few more things named after women. It is defined by
the formula:

MAREγ :=
1

n

n∑
i=1

|xi − yi|
xi + γyi

.

Let’s unpack the motivation and properties of this metric. First, what kind of real error does it
capture? Suppose, for example, that once we have a prediction yi for what we think the closing auction
size will be without our participation, we decide to put in an auction order for γyi shares. In other
words, we are expecting to represent a γ

1+γ
fraction of the total auction size if our order gets fully filled.

Thus, |xi−yi|
xi+γyi

represents the absolute percentage error under the assumption that we successfully add γyi
shares to the closing auction size. In other words, we assume the true answer becomes xi + γyi, and our
prediction becomes yi + γyi. [Note that the difference between these two things stays equal to xi − yi, as
the γyi terms added to both cancel out.] For this reason, we feel that the MAREγ metric has a defensible
interpretation as being MAPE in a world where we assume trading success, which is probably the world
we most care about anyway.

This extra γyi term acts as a floor that prevents the denominator from being suddenly low, allowing
our models some grace when they fail to anticipate low outliers. Similar to move away from mean-squared
error, this kind of correction is likely to be necessary if low outliers are not particularly predictable.
However, introducing this parameter γ presents a new problem - how should we choose γ? If γ is too
small, the corrective goal here will not be accomplished. If γ is too large, our assumption that our trading
activity will fully accomplished becomes less and less realistic. Theoretically, we could adjust γ surgically
for every data point here, reflecting some notion of how much we may typically want to trade in the
close for various symbols on various days. But for now, we will do something relatively simple and set
γ = 0.1 universally. We will also later test a few nearby values of γ to check that our results are not too
dependent on the exact value of γ.

4 Evaluating baseline models

With all of this in place, we can finally compute our chosen MAREγ metric on some baseline models to
see what we should be aiming to beat. Like MSE or MAPE, the MAREγ metric can be augmented with
arbitrary weights wi if we want, but for now we’ll just weight all symbol/day pairs evenly.

As a first test, let’s compare using a 20-day rolling average of close sizes as a prediction to using a
20-day rolling median. Computing over our entire training data set of 2022, we get a MAREγ value of
0.672 for the rolling average, and a MAREγ value of 0.414 for the median. This is an immediate win for
the median! [If it helps you to remember, error scores are like golf. Lower is always better.]

We might wonder how much of this is due to the fact that the special event days are still being
included inside the rolling average calculations. To get a sense of this, we’ll remove all of the special
event days from our data set, recompute rolling averages and medians on the remaining data only, and
compare everything on the now-pruned data set. The results are quite striking:

prediction method MAREγ score
rolling average 0.689

rolling average of non-special days 0.569
rolling median 0.408

rolling median of non-special days 0.385

Table 1: Baseline prediction methods - performance on non-special days

There is some gain to just removing special days from the rolling computations, but the general
robustness of medians here vs. averages is an even bigger effect. This is a strong signal that we should be
using median-based prediction as our baseline to beat, as this is demonstrably better than average-based
prediction.

8

5 Functional forms and (re)-choosing a prediction target

Now it’s time to think about how we might incorporate our chosen features of rolling historical medians,
OpenF , LateF , IsExpiry, AfterEarnings, and IsRebalance into functions that produce predictions
of closing sizes. We’ll let CloseH denote the rolling historical median of closing sizes, computed over
a trailing window of 20 days. Our baseline to beat can now be expressed as a simple linear function
Y = CloseH, where Y represents our prediction for the close size. [We could alternatively use medians
computed with special days removed, but it’s not clear that the small improvement we observed above
on non-special days is worth the additional complication in implementation. For now we’re trying to
keep it simple and find big relative improvements, rather than small refinements.]

Even before we bring in the additional features, we should ask: Is Y = CloseH the best prediction
we can make for closing sizes using only the feature CloseH? What if we consider predictions of the
form Y = α ∗CloseH, where α is a constant? Are we sure that 1 is the best constant under our metric?
It turns out that it’s not!

Let’s solve for the value of α that minimizes our MAREγ score on our training data for predictions of
the form Y = α ∗CloseH. Technically we will minimize n times the MAREγ score, essentially removing
the averaging. This is equivalent to minimize when the number of data points n is fixed, and it can
de-clutter our expressions a bit since we don’t have to carry out factors of 1

n
. If we let xi denote the true

close sizes over our data set, we can write the total error sum as a function of α:

n ∗MAREγ(α) :=

n∑
i=1

|xi − yi|
xi + γyi

=

n∑
i=1

|xi − α ∗ CloseHi|
xi + γ ∗ α ∗ CloseHi

Staring at this, we immediately feel the downside of moving away from mean-squared error as our
metric: minimizing a nice quadratic function of α on our data set would be a breeze, whereas this looks like
a mess! There are a few different approaches we can take to deal with this. The traditional mathematical
approach would be to find all of the values where this function of α is either not differentiable or where
the derivative is equal to 0. These would be the candidate values of α and then we would check them to
find the minimum. A more heuristic and brute-force computational approach is to simply try all values
of α at some fixed level of precision and in some fixed range. If we were planning to do this sort of
minimization frequently on very large data sets, it could be worthwhile to develop the more principled
mathematical approach, but since we are only doing this to get a sense of a good choice of α, and don’t
expect this to be our final model anyway, we’ll take the heuristic computational path for now, trying all
potential values of α between 0.50 and 1.50, rounded to two decimal places)

Computing across our whole data set but excluding special event days, we get a minimizing value
of α = 0.82. Using a prediction of Y = 0.82 ∗ CloseH on these days yields a MAREγ score of 0.37,
compared to 0.40 for using Y = CloseH.

We might suspect that the MAREγ-minimizing value of α should be different for special event days.
We can check this by computing minimizing values separately on the sub-data sets whereAfterEarnings =
1, where IsRebalance = 1, and where IsExpiry = 1. For options expiry days, we find that α = 1 is
the best choice, which brings us back to Y = CloseH as a baseline prediction for those days. But for
earnings and rebalance days, we find higher values of α perform better. For after earnings days, we get
a minimizing value of α = 1.18. For rebalance days, we have to raise the ceiling of our search a bit and
end up with a winning value of α = 1.95.

Here is a summary of our results for using a multiple of CloseH to predict close size, using the
MAREγ scoring metric and dividing our data by special events:

data set minimizing α score for Y = α ∗ CloseH score for Y = CloseH
non-special days 0.82 0.37 0.40

after earnings days 1.18 0.26 0.29
expiry days 1 0.48 0.48

rebalance days 1.95 0.61 0.68

Table 2: Using a function of the form α ∗ CloseH for prediction

These results represent a new baseline for more complicated models to beat.

9

5.1 Linear functions using OpenF and/or LateF

A natural thing to try next is linear functions over more of our variables. Focusing on non-special days
for now, we might want to get OpenF and LateF into the mix to see how much we can leverage their
correlation with CloseF to improve our predictions. Since OpenF and LateF are ratios, it wouldn’t
really make sense to use a functional form like Y = α ∗ CloseH + β ∗ OpenF + δ ∗ LateF . Instead, we
might imagine:

Y = α ∗ CloseH + β ∗OpenF ∗ CloseH + δ ∗ LateF ∗ CloseH.

If we use out-of-the-box linear regression in the scikitlearn package in python to fit a linear form like
this to our non-special training data, we get α = 0.87, β = 0.15, and δ = 0 (each rounded to two decimal
places). If we use these values to make predictions for the close size (still on the training data set), we
get an overall MAREγ score of ... drum roll please ... 0.41. [Sad trombone sound.]

This is a worse score than we were getting for just using αCloseH! Since linear regression solves for
an optimal solution on the training data, and setting β = δ = 0 is an option it should be considering,
this may seem nonsensical at first. In fact, it would be nonsensical, except for the key fact that the
out-of-the-box package is optimizing with respect to mean-squared error, and we are measuring predictive
success in a different metric.

Before we spend effort to either find or build a more sophisticated implementation of linear regression
that can minimize with respect to our custom MAREγ metric, we should try to get a quick sense of
whether linear models are likely to perform well on our data. One brute-force way to do this is a to do a
grid search over some range of coefficient values and pick out the combination that minimizes our error
metric (among the values we tried). For a quick and dirty version, we’ll do this just for two coefficients
at a time. We’ll start with a grid search over α and β values to find the best fitting function of the form
Y = α ∗ CloseH + β ∗ OpenF ∗ CloseH. If we search a range of 0 to 1 for each coefficient, rounding to
one decimal point, we come up with values of α = 0.7 and β = 0.1 The overall MAREγ score still rounds
to 0.37, so is not noticeably better than what we had without using the OpenF feature. Similarly, we
can try Y = α ∗CloseH + δ ∗LateF ∗CloseH, and the best combination we find is α = 0.6 and δ = 0.2.
This yields a score of about 0.36, which is an underwhelming improvement.

5.2 Decision tree models and a shift of perspective

When linear models don’t show meaningful improvements when we add features, there are several possible
explanations. One is that the features simply aren’t meaningful, or are redundant to features that are
already present. Another is that the underlying relationships aren’t linear, and our choice of functional
form is holding us back. Since we are still considering such a small feature set here, and the Spearmen
correlation coefficients for both OpenF and LateF were clearly meaningful, there are good reasons to
suspect that the presumption of linearity is a large part of the problem.

Decision trees are a class of non-linear functions that may work well when linear models fail. They
allow us to partition our data into pieces through a sequence of decisions, where each decision is deter-
mined by checking on our variables against a threshold. For example, we might have a tree whose top
node splits our data in two by whether OpenF is ≤ 1 or > 1. From there, we might split each subset of
our data further according to similar criterion:

10

Ultimately, each leaf of a decision tree is labeled by a single prediction. The tree represents a function
from our input feature values to our resulting predictions. The function is evaluated by taking a single
data point and following the rules of the tree nodes down from the root until arriving at a leaf and
assigning its value as the prediction. In this way, decision trees represent piecewise constant functions
on our data set, where the boundaries of the pieces are defined by a combination of thresholds on our
input features.

At a first glance, these may seem like a terrible fit for our problem of closing size prediction. Close
sizes are nowhere near constant! Since the number of leaves is a decision tree is a bound on the number of
distinct values it will predict, we’d expect to need ridiculously big trees in order to produce good closing
size predictions, and such large trees are definitely going to be over-fit.

But actually - there is a key shift in our perspective that is useful here. What if instead of predicting
close sizes directly, we use decision trees to predict CloseF := CloseSize/CloseH? If we view CloseF
as the prediction target instead of the close size, then our current progress as summarized in Table 5 can
be viewed as a simple decision tree with four leaves:

We can even re-imagine our MAREγ metric for close size predictions as a metric on CloseF predic-
tions! To see this, let’s go back to the formula for computing MAREγ:

MAREγ :=
1

n

n∑
i=1

|xi − yi|
xi + γyi

.

In this formula, xi represents the true close size, and yi represents our prediction of close size. Let’s
introduce a new variable zi to represent the value of CloseH for data point i. Our metric doesn’t change
if we divide by zi in both the numerator and denominator of the ith term:

MAREγ :=
1

n

n∑
i=1

|xi
zi

− yi
zi
|

xi
zi

+ γ yi
zi

[Technical note: we are assuming here that zi is never 0 so that it makes sense to divide by it. We
suspect dropping any points where zi = 0 would not be a big deal as this shouldn’t happen often.]

If we define x̃i :=
xi
zi

and ỹi :=
yi
zi
, we can rewrite this as:

MAREγ :=
1

n

n∑
i=1

|x̃i − ỹi|
x̃i + γỹi

.

Thus, viewing x̃i as the true value of the prediction target CloseF and ỹi as our prediction for CloseF ,
we get exactly the same computation under the MAREγ metric as we had before.

There is a remaining problem though. Common off-the-shelf decision tree fitting packages, like the
one in scikit learn, will try to find trees that perform well on the default error metric of mean-squared
error. As we saw with linear models above, it’s going to be important to try to fit models based on our
desired error metric instead. Unfortunately, the scikit learn decision tree package doesn’t let us specify
our own arbitrary metric, and it’s not hard to understand why, as supporting arbitrary metrics would
likely make the package prohibitively inefficient.

In this case, however, we can use a somewhat slick trick to avoid having to build own our package
around our novel metric choice. The scikit learn package does support another option for the metric

11

used to construct a good tree: mean absolute error (MAE). Trying to minimize MAE for predictions of
CloseF would mean finding trees that have smaller values for:

MAE :=
1

n

n∑
i=1

|x̃i − ỹi|.

This has the same numerator as our desired MAREγ metric, but it is missing the denominator.
However, the scikit learn package has one more built-in degree of freedom. We can specify weights wi

for the data points and instead ask it to try to minimize:

1

n

n∑
i=1

wi|x̃i − ỹi|.

If we could set wi = 1
x̃i+γỹi

, this would be exactly what we want! But we can’t do that, as the
predictions ỹi are not fixed ahead of time, but rather what we are trying to determine through the tree-
fitting process. We can reasonably approximate what we want, however, by setting wi =

1
x̃i+γ

, which is
what the denominator would be in MAREγ for the default case of predicting CloseSize = CloseH, or
equivalently, CloseF = 1.

Using the pre-built functionality of weighted MAE minimization with these weights, we are able
to obtain rather simple trees that perform well under MAREγ. Looking at only non-special days for
example, here is a 10 leaf tree that just uses the features IsETF and LateF to obtain an overall MAREγ
score of 0.34 on the training data, which is a promising improvement over the 0.37 we obtained in Table
5:

We asked the scikit learn package to fit this tree using three variables: OpenF which would appear
in the tree as x[0], LateF which appears as x[1], and IsETF which appears as x[2]. It is encouraging to
see the tree make some intuitive choices, like splitting based on IsETF right at the top, allowing it to
create two submodels: one for ETFs and one for non-ETFs. It is also interesting that the OpenF feature
wasn’t used - this seems to be a general tendency to use LateF more than OpenF in the constructed
trees of various sizes, so we suspect that LateF is the more useful feature.

We can also throw in all the data along with the additional variables IsExpiry, IsRebalance, and
AfterEarnings to let the tree fitting decide for itself when and how to adjust for special events. Here
for example is a 5 node tree fitted over the entire training set:

12

The variable x[1] here is LateF , the variable x[2] is IsETF , and the variable x[3] is IsRebalance.
The overall MAREγ score on the full data set for this tree is 0.35. This compares favorably to an overall
score of 0.38 if we aggregate the results in Table 5 (weighting each individual data point evenly).

Naturally, adding more nodes to our trees can give us better performance on our training set, but
there are a few downsides. For one, the models become less explainable from a human perspective. They
also may start to suffer from over-fitting, meaning that they begin making decisions that depend too
heavily on the granular details of the training data in ways that won’t generalize well to making good
predictions on fresh data. For this reason, we probably want to stop adding nodes to our model as soon
as the performance benefits begin to dwindle. Let’s look at MAREγ scores on the full training data set
for different tree sizes in order to help us pick a size. [Here’s we’ll report scores to greater precision to
help us see the dwindling performance effect.]

Number of leaves Variables used MAREγ score
5 LateF , IsETF , IsRebalance 0.3503
10 OpenF , LateF , IsETF , IsRebalance, IsExpiry 0.3441
20 OpenF , LateF , IsETF , IsRebalance, IsExpiry 0.3411
30 OpenF , LateF , IsETF , IsRebalance, IsExpiry 0.3401

Table 3: Comparing different tree sizes on the training set

It is perhaps interesting here that all trees were fit with all of the variables OpenF , LateF , IsETF ,
IsRebalance, IsExpiry, and AfterEarnings as options, and AfterEarnings was never used. It is also
interesting that the performance improvements accrue and then dwindle fairly quickly, meaning that
small trees seem to be sufficient to capture what we can with this approach.

Let’s take a look at the fitted tree with 10 leaves:

13

To help us understand the function that this tree represents, we can order its leafs from the smallest
output to the largest and list the ranges of variables that each leaf represents:

Output IsETF OpenF LateF IsRebalance IsExpiry
0.459 True Any ≤ 1.027 Any Any
0.567 True Any ≤ 1.027 Any Any
0.671 False Any ≤ 0.801 Any Any
0.796 False Any (0.801, 1.15] False False
0.92 False Any (1.15, 1.725] False Any
0.992 False Any (0.801, 1.15] False True
1.076 False Any > 1.725 False Any
2.112 False Any (0.801, 1.15] True Any
2.306 False ≤ 3.451 > 1.15 True Any
4.26 False > 3.451 > 1.15 True Any

Table 4: Output table for our 10-leaf tree

There are many things that are intuitive about this model, and a few things that inspire questions
for further investigation. On the intuitive side, we see that outputs tend to be lower for ETFs than
non-ETFs, lower for lower LateF values and higher for higher LateF values, higher for special days than
non-special days, etc. We might ask though: WTF is up for ETFs? Why is it the case that we end up
multiplying their historical medians by such low values to obtain our predictions? What does this say
about the distributions of their closing auction sizes?

Testing on fresh 2023 data Let’s take our 10-tree model and see how it performs at making
predictions for 2023 data (collected for the same 1000 symbols). As a baseline, we’ll first compute the
MAREγ score for the baseline strategy of predicting the historical median every time. This score is 0.402
on our test data, which is extremely similar to the analogous score of 0.410 on our training data. When
we use our 10-leaf tree to make predictions on the test data, the score drops to 0.337. This is comforting
for two reasons. First, it is very similar to the performance benefit on the training data, suggesting that
we are not suffering from overfitting. Second, it is good evidence that the kind of model we are fitting
has relevance over fairly long stretches of time.

Let’s also take a look at the error distribution for our predictions on test data. For this, we’ll
avoid having to set the γ parameter for the MAREγ metric and will instead just compute the absolute
percentage error for each prediction. In other words, for each day and symbol we’ll compute:

APE :=
|x− y|

x
,

14

where x is the true close size and y is our prediction for it (using the 10-leaf tree). We can then ask
questions like: what fraction of the time do we achieve APE values below a certain bound? To visualize
the answers to such questions, we can graph the cumulative density function for our APE values. More
precisely, for an error bound b, we’ll define the function cdf(b) to be the fraction of predictions whose
APEs are ≤ b, and then we’ll plot cdf(b) as a function of b.

We’ll do this for both our 10-leaf tree predictions and the baseline of using historical medians as
predictions:

The fact that the red curve here stays to the left of the blue one is encouraging: it means that we are
generally able to keep a higher fraction of predictions within a given error bound using our decision tree
method, as compared to the baseline.

6 Ideas for further research

There are several things we plan to investigate next in order to further improve our prediction capabilities.

Anomaly detection and bootstrapping We might wonder if there are detectable patterns in
cases where our predictions are most wrong. For example, days where there is significant news related
to a symbol might result in trading activity that we can spot as anomalous earlier in the day. Even if it
is difficult to obtain good predictions for anomalous events, it would be helpful to know that we should
have less confidence in predictions in such circumstances.

To reduce more mundane errors, we can also try boosting. This is a common practice in machine
learning that involves fitting a new model specifically to predict the errors in an existing model, and then
forming a combination of the two models to perform better than the existing model alone.

Symbol clustering, panel data analysis, and other functional forms Right now we are
fitting one static model shape (the decision tree) across symbols, using symbol and day specific features
as inputs. However, there are a number of more interesting ways to fit shapes that can wholly or partially
depend on the symbol and/or time. We could train a fresh model per symbol, for example, though we
suspect that this might be slicing the data too thin and result in some model instability and over-fitting.
We could alternatively cluster symbols according to some features of trading activity and then train a
model shape for each cluster, allowing us some variety of shapes while still keeping a sizeable amount of
data for training for each cluster. We can also explore the performance of different re-training frequencies
to learn something about how quickly our model shapes should be adapting over time.

Techniques of panel data analysis offer potentially different ways to express the joint influence of
symbols and time in our modeling process. We can try fixed-effects models and generalized linear models
(GLMs), for example, which can combine symbol-specific effects and time-varying factors.

We can also extend the functional forms our model-fitting process considers in rather natural ways.
Random forests are an obvious next thing to try, as they are fit by combining a number of decision trees.
Feed-forward neural nets are also a natural extension to try, as they are similar to trees except with an
extra degree of freedom that a child node can have multiple parent nodes (unlike a tree, where a child has
a single parent). We should suspect though, that these extra degrees of freedom will introduce problems
of over-fitting rather quickly, so we will need to be disciplined and cautious in our testing processes to
validate such models and their robustness. This is why we do not (as a general practice) jump to using
fancier models from the outset. It is important to first reach an improved robust baseline like we have
developed here to judge such models against, so we can more clearly see if the added complexity is really
worth it.

15

Feature refinement and enhancement The feature set we have explored so far is fairly intuitive
and basic, and we suspect there is a lot of room for refinement and enhancement here. Refinement
could include tweaking the definitions of the existing variables, especially LateF . We might wonder, for
example, how important it is what precise time of day is used for measuring LateF , and if it is best
measured across the market as we are doing now, or only on the primary exchange, or excluding certain
kinds of volume, etc. We might further refine features like IsETF to consider different kinds or clusters
of ETFs.

There are also new features we might add to the mix. One could be a symbol-specific feature that
encodes which indices a symbol belongs to - something that might be relevant in combination with a
feature like IsRebalance. Other possible features might include more nuanced properties of trading
activity, like how closely trades are clustered together, median trade sizes, etc.

16

	Introduction
	Data Selection and Feature Exploration
	Special events
	Symbol types
	Historical and intra-day features
	An opening size feature
	A late-in-the-day volume feature
	Imbalance feed features?

	Choosing a prediction target and a metric of success
	Evaluating baseline models
	Functional forms and (re)-choosing a prediction target
	Linear functions using OpenF and/or LateF
	Decision tree models and a shift of perspective

	Ideas for further research

