
Rejecting the Black Box: an Inside Look at the Design

of Proof Trading’s New Algorithm

Allison Bishop∗

1 Prologue: Why should you publish an algo design?

Computer science as a practice requires you to define precisely what you mean. You cannot

tell a computer: “trade stocks for me, and give me best execution!” You must patiently and

painstakingly instruct it to copy some portions of bits into other portions of bits, shuffle

some third set of bits around, read in some other bits from somewhere else, and so on. Well,

usually not actually you, but someone. Well, actually lots of someones. Someones who

designed the operating system you’re working on, someones who designed the programming

language you’re using, someones who designed the network protocols your trading system

uses to communicate with other people’s systems, and so on.

These details are fundamentally knowable in nature, but not in scale by individual human

beings. As computer systems evolve, we layer abstractions between ourselves and the lowest

level operations of bits. We delegate to hierarchies of teams, tools, and vendors. We allow

knowledge to pool into silos of narrow specialization, because otherwise, we could not keep

up and get anything done.

The notion of an “algorithm” sits both atop this hierarchy and outside it. If you consult a

computer science textbook, the definition of algorithm will likely use words like “procedure”

or “recipe” that are not intrinsically tied to the realm of computers. It’s the instructions

you give for accomplishing a task, it might say, or a sequence of steps to be followed. The

language becomes awkward and vague, but not because the concept is new. Rather because

the concept is old. So old, that we probably learned it before we gave it a name. We learned

algorithms for tying our shoes, for adding two integers, for brushing our teeth. We learned

these things as answers to the question of “how,” and we learned that answers could have

varying degrees of specificity. At first we needed very specific instructions, but as we learned

and got older, we could follow higher level instructions, subsuming the lowest details as

familiar, predictable pieces that did not need to be said explicitly anymore. We also learned

∗allison@prooftrading.com

1



to subsume certain tools as given, and restrain ourselves from falling too deeply down every

rabbit hole of “why.”

This subsumption has obvious benefits, and less obvious costs. Sometimes we feel the

costs when we try to teach someone else something we “know” but find ourselves unable to

explain. Sometimes we feel the costs when something changes, and we don’t know how to

adapt our procedures effectively. In some cases, the lower level knowledge that informed our

higher level understanding has evaporated from our minds, leaving only a derived residue

that is brittle in its relation to context, and perhaps invisibly so. How long might it take us

to recognize when we are operating on assumptions that are no longer true?

Layering of 
Abstraction & 
Subsumption of 
Details

There is something more that can be lost in layers of abstraction if we are not careful:

the value of forcing ourselves to be explicit. Anyone who has ever taught a young child

or programmed a computer is well aware of the phenomenon - we think we know what we

2



mean, until we see our own words parroted back at us in a literal translation with horrifying

consequences. Sometimes this is born of our failure to properly define a sub-concept we

are referencing (“ok Tommy, I admit I did not really mean it when I said you could color

‘anywhere’ that wasn’t on the wall”), and sometimes it is born of our failure to anticipate the

circumstances under which our instructions will be applied (“oops! I thought I issued that

delete instruction in the subfolder containing those old files, not the main folder containing

the new ones!”) In navigating our lives and careers, we humans are quick to grasp that there

is safety in distance from such specific commands. “But honey, I clearly told the babysitter

to keep him out of trouble!” and “But I only instructed the intern to delete the unnecessary

files!” We often pretend that all we gain from our distance is convenience and efficiency, but

often we are seeking less accountability as well.

Specificity is hard and risky work. But somebody does it, even if we don’t. Between every

layer, somebody has to translate higher level instructions into lower level ones until we get

all the way down to the shuffling of bits or the changing of diapers. The supposedly shared

context that “goes without saying” is meant to make this seamless, but this foundation can

crumble rather easily and dramatically at times.

In the domain of algorithmic trading, shared context may be under quite a bit of strain.

It is a nearly comical game of telephone that begins when someone puts money into a

retirement account. “Give me growth or something,” the future retiree says. “Give them

growth or something,” the fund manager tells his subordinates. “Give me exposure to

these three factors that roughly mean growth or something,” the next person says. Some

number of iterations later, someone says “Give me 100,000 shares of MSFT.” By this point,

an important translation has occurred. The original customer goal, to the extent that it

was ever formulated in the first place, has been pooled with other customers’ goals, melded

through other intermediaries’ interpretations and blended with their own separate goals, and

one or more specific orders to buy/sell stocks has emerged from this process. The benefit to

the end customer so far is supposed to be twofold. One benefit is the supposed superiority

of this chain of experts as compared to the customer’s own haphazard guess at translating

high level goals into concrete orders. The other benefit is diversification: since stocks are

ultimately bought and sold in indivisible units called shares, it isn’t possible for a single

customer with a more limited amount of money and time to purchase and actively maintain

the same diversity of assets that a fund manager can purchase and maintain with the pool

of all their customers’ money. One can certainly debate the true extent of these benefits,

and compare them to more automated solutions like indexing and various artificial notions of

fractional shares. But it’s at least somewhat clear what problems these services are supposed

to be solving. It would be quite unreasonable and inefficient for each individual retiree to

build up the body of knowledge required to passably translate “growth or something” into

a suitable portfolio of financial assets and continually re-balance it over time.

Conversely, there is danger lurking in the end customer’s ability to vaguely say “growth

3



or something.” The portfolio that emerges may not serve the customers needs well at all.

Or the customer may have wildly unrealistic expectations of performance or risk. Such

things may be the result of honest miscommunication, deliberate subterfuge, or misaligned

incentives (or all of the above).

This is not a problem that is particular to finance, or to computer driven systems. It

is a fundamental tension inherent in all task delegation: when you save yourself the work

of making your instructions explicit all the way down to the lowest detail, you introduce

opportunities for an agent who does not fully understand or share your goals to deviate

from what you want them to do in certain circumstances if you had taken the time to fully

understand the details.

A popular mechanism for navigating this is competition and choice. Agents will compete

for your business, and you can reward the ones who do a good job by continuing to use them,

and punish the ones who do a bad job by terminating their services. This mechanism works

well when a few conditions are satisfied: 1. there is a healthy range of options for service

providers, 2. distinguishing between a good job and a bad job is something that can be done

in a reasonable amount of time, and is a much easier problem than doing a good job in the

first place.

regulators tasked 
with enforcing 

intepretation of 
best execution at 

each layer of 
translation

competition and choice 
depends on a health 
range of options for 
service providers

customer delegate 
specialized financial 

tasks to professionals 
and trust there are 

bounds on how 
professionals should 

behave

Ideal 
Ecosystem

customer

service 
providers

regulator

In the case of a customer contributing to a retirement account, that second condition is

problematic. The funds are supposed to perform well over a long term time horizon, and

judging them on a short term basis is likely to be dominated by market noise and yield little

insight. As a result, there are vast sub-industries of finance organized around addressing

these tensions, and vast regulatory regimes in place to try to protect end customers and

enforce at least a reasonable zone of interpretation at each layer of translation. Pretty much

everyone agrees that this is necessary. Customers need to be able to delegate specialized

financial tasks to professionals and trust there are bounds on how professionals should behave.

Competition alone is not a sufficient mechanism, as customers aren’t readily equipped to

4



evaluate sophisticated products without putting in an unreasonable amount of work. As

new layers emerge and old layers evolve, it’s a constantly moving and delicate dance.

And in fact, we’ve only started. The game of telephone keeps going. The next person

says “Give me 25,000 shares of MSFT today and probably 25,000 more tomorrow, we’ll see

how it goes.” The next person says “allocate today’s 25,000 share order to one of our brokers

and ensure best execution.”

Let’s pause again for a moment. Something weird happened there. Things were still

getting more concrete, but then a new source of vagueness slipped in: the notion of best

execution. It sounds pretty innocent: who wouldn’t want “best” execution? But what does

it actually mean?

If you consult FINRA rule 5310 on Best Execution and Interpositioning, you find that a

broker must “use reasonable diligence to ascertain the best market for the subject security

and buy or sell in such market so that the resultant price to the customer is as favorable

as possible under prevailing market conditions.” This language rules out some obviously

bad and lazy things, like routing all customer orders to a particular dark pool without ever

comparing the results to other possibilities. But it leaves a lot of wiggle room. There

are two gaping holes in this guidance: one is lurking in the phrase “under prevailing market

conditions.” Since the execution of trades is an interactive process between the many brokers

submitting orders and the multiple venues matching orders, the timing of trades is highly

variable. Timing of individual trades is not completely within a broker’s control (they can’t

control when willing counter-parties arrive), but it is influenced heavily by the choices the

broker makes in how to distribute a large order into many small orders over time and over

trading venues, and how the broker communicates orders to trading venues (use of order

types and order parameters). Since “prevailing market conditions” change rapidly in time,

the influence a broker exerts over timing is also an influence on the “prevailing market

conditions” under which the trade will be executing. In this way, brokers affect both the

grade and the grading rubric for best execution at the same time.

The second gaping hole is that the best execution guidance doesn’t really grapple with

the nature of large orders, which are unlikely to be traded in their entirety at once. When

a broker designs an algorithm to break up a large order into smaller pieces and seek to

trade the pieces gradually throughout the trading day, does the best execution responsibility

apply to just the pieces individually or to the large order as a whole? Clearly in spirit,

it should apply to the large order as a whole. But what does a “price to the customer

... as favorable as possible under prevailing market conditions” even mean when you are

looking at several individual prices over the course of a day where market conditions were

changing dynamically? How can you know what would have been possible if the order had

been chopped up in a different way? What is the space of “reasonable” alternatives that one

should compare to and how does one do so while general market noise is likely to drown out

small differences in outcomes due to the broker’s behavior? And if you give up on this harder

5



problem and just evaluate each small trade in its temporally local context where things are

clearer, surely you might be blind to important failures to choose the “best” local times and

order sizes.

So what happens after this troublesome notion of “best execution” is introduced into the

game of telephone? It’s not too hard to guess. It gets parroted down the line for a bit, then

disappears into the black box of a secret “algo”. When the telephone game turns around

and each person reports back to their superior, the “best execution” straw man re-emerges

at the same point and gets passed back up. “Buy me 25,000 shares of MSFT today using

your VWAP algorithm that provides best execution,” the next person tells the broker. The

algorithm makes its choices of how to slice up the 25,000 shares, and spits outs a dynamic

sequence of much more specific commands: “place a midpoint peg buy order for MSFT on

NASDAQ at 10:01:02 am for 100 shares,” the algo says. These commands get transmitted

through multiple network layers (and often multiple vendors and intermediaries) and finally

land at a trading venue, where perhaps they result in a trade. Their fate gets passed back up

to the algo, which may adjust its state and issue new orders. The algo passes its results back

to the broker who is running it. The broker periodically runs some paltry and horribly noisy

tests on these results to make sure they seem reasonable. Then the broker passes back up to

the next person: “here’s your volume-weighted average price, achieved with best execution.”

This continues to percolate up the levels to the originator of the 100,000 share mandate,

who ultimately receives their 100,000 shares of MSFT, their bill, and an assertion of “best

execution.” Here the “best execution” notion evaporates again, and the message morphs

back into “here’s your growth or something” to the retiree, who can check the behavior of

their account and try to keep it consistent with their goals at various time horizons.

There are two questions that arise when we critically examine this workflow. First: are

algo designers really the best people to translate this vague notion of “best execution” into

specific sequences of orders in a dynamic, distributed market? Second: how does the com-

monly black-box nature of algos contribute positively and negatively to the overall process?

How much visibility should an algo provide, and to whom?

We firmly believe the answer to the first question is yes. The problem of algorithm design

for electronic trading is a complex scientific problem. It involves the delicate dynamics of

distributed systems, the complex economics of continuous trading and batched auctions, the

fraught task of modeling market forces as randomized processes, and the herculean statistical

challenge of evaluating alternative choices in a meaningful way when the degrees of freedom

combined with the inherent variance conspire to overwhelm the sample size of a single firm’s

trading activity. This is a problem that deserves to be tackled by scientists. Retirees,

regulators, and even financial professionals with other specialities should not be expected to

solve these kind of problems for themselves and then tie the algo designers’ hands.

But is competition a sufficient mechanism to ensure that algo designers will do a “good”

job on behalf of the end clients? While there is a healthy number of agency brokers and

6



algo products available for trading US equities, it is not at all clear that those who choose

between the products can evaluate their effectiveness with a sufficient amount of accuracy

within a reasonable use of energy and time.

Let’s do a thought experiment (informed by real market data) to help gauge the extent

of the challenge to evaluation. Each trading day, the official opening price of a stock is set

through an auction at 9:30 am, and the price fluctuates continuously throughout the day

until the official closing price is set in an auction at 4:00 pm1.

If we look at the sequence of prices obtained for trades of a given stock on a given trading

day, there is a significant amount of fluctuation. To get a rough sense of how much, we can

look at the relative change from the opening price to the closing price. If we let Op denote

the opening price and Cp denote the closing price, then this quantity is defined as:

Dp :=
Cp �Op

Op

:

We have made this relative to the opening price so that it is meaningful to compare this

quantity across different stocks that have vastly different prices. On a given day, we will

have over 10; 000 values of Dp, one for each symbol. If we collect these Dp values over

symbols and over trading days, we can view them as samples from a single probability

distribution, weighted by notional value. In other words, we can build up an empirical

estimate of the underlying distribution by placing probability mass on each observed Dp

value that is proportional to the notional value traded in that symbol on that day.

We did this for all symbols and all trading days over the month of July 2021. Once we

have this probability distribution in hand, we can sample it any N times and compute the

average value of Dp (evenly weighting over our N samples). In some sense, N represents

the number of orders we might use in a sample to try to measure an algo’s performance.

This is not a perfect analogy, as each sample here is drawn according to notional value, and

real institutional trading flow will probably be distributed differently over symbols than the

general notional value distribution over the market. Nonetheless, this should give us some

intuition for how much variance there might be in our performance metrics. We can do

many experiments of drawing N samples, and look how much the resulting averages vary.

In particular, we’ll look at the interquartile range of our resulting averages, which is the

difference between the 75th and 25th percentiles.

For each N from 1 to 150, we did 1000 experiments, and took the difference between the

750th and 250th resulting values after sorting. Below is a graph of those interquartile ranges

1This is already ignoring some nuance. Sometimes opening or closing auctions are late or don’t happen,

and the notion of “price” is multi-faceted. The stock “price” might refer to the prices of actual trades (which

happen at discrete times and for varying amounts of shares), or quoted prices from willing buyers or sellers,

which are distinct from each other and last for certain windows or time before being updated, traded, or

canceled. And some trading occurs in pre-market and post-market sessions, before 9:30 am and after 4 pm,

respectively.

7



as N , the sample size for each experiment, grows from 1 to 150:

Unsurprisingly, as the sample size of each experiment increases, the variation between
the resulting averages decreases. At sample sizes near 150, the interquartile ranges are a bit
greater than 0:005 wide, and the improvement in precision as a function of growing sample
size has slowed.

So what does this mean? For one thing, it suggests that it's quite di�cult to see mean-
ingful performance di�erences between algos on metrics like slippage vs. arrival at these
sample sizes, unless the performance di�erences are considerably larger than 50 bps. For
A-B testing di�erent algos, especially when we are limited to the 
ow of a single client over a

8



period of a month or two, this is pretty sobering news. Without further correction and care-
ful normalization (a fraught process itself), extraneous market forces are likely to pull the
results around noisily enough to obscure even meaningful and consistent di�erences in algo
performance. In fact,measuringalgo performance may be as hard (or harder!) as designing
algos in the �rst place. And the people with the skill set to tackle this hard problem? You
guessed it - the same people with the skill set to design algos.

This creates a very uncomfortable position for the �rst person in the game of telephone
who is directed to ensure \best execution." To truly embody the full spirit of this directive
seems to be a full time job equivalent to designing algos, and that's supposed to be the thing
that's delegated to the black box! What to do?

There are a few common approaches to try to wriggle out of this conundrum. One is to
hire in-house scientists to grade the outputs of the algo black boxes. Another is to outsource
this job to an independent third party (a TCA provider). A third option is to hollow out
the vague directive of \best execution" and replace it with a checklist that boils down to
something more like \not obviously terrible execution."

All of these options have major drawbacks. The use of in-house scientists is likely the best,
but it is also costly, and if everyone did it there would be some comical e�ects: the overall
population of quantitative scientists would spend much more resources on grading algos
than designing algos, and that feels like an ine�cient state for the market as a whole. Also,

9



�nding, training, and crucially listening to good data scientists is a much harder problem
than proliferating data science boot camps would like you to believe. The outsourced TCA
provider at least allows a single set of scientists to serve as algo evaluators for a large
population of �rms who need to evaluate algos, but the incentives are a little weird. While
it is true that the third party evaluators should have no incentive to cherry-pick the stats in
favor of any particular algo, they also have no real strong incentive to do a good job, nor any
clear mandate on what a good job is. Human beings are creatures of inertia, afterall, and
most of what clients want from TCA providers is a stamp of approval that what they are
doing already is basically ok. Providing that stamp is much easier to do if one combines TCA
with the third option: �xing a minimally defensible de�nition of \best execution" rather than
a formulating a more satisfying but complex one and having to teach your clients that this
is what they should want.

There is a fourth option that, as far as we know, has not really been tried before: open
the black box. What if we didn't limit ourselves to grading algos solely on noisy performance
metrics? Naturally we'd always want to measure those to learn anything we reasonably can,
but what if we could also cut through the noise and examine the raw source: the algo designs
themselves, and the processes that drove their development?

As an illustrative comparison, consider the task of deciding where to send your child to
school. You might look at test scores for each contender and these are likely to reveal any
huge di�erences, but small di�erences are unlikely to be particularly meaningful. You could
stop there and say, \I'll send my child to this school that has reasonable test scores," but
wouldn't you also want to knowhow the various schools approach their mission of education?
Ideally you would want to visit the various schools, you would want to talk to the teachers.
You would want to know what they think is important, what they think is unimportant.
You would want to gauge how much thought they have put into their approach, and how
aligned their values are with your values. You would want to see what's underneath the
test scores. Why settle for a noisy outcome evaluation when you can also directly assess the
mechanisms that drive the outcomes?

It's true that human beings are not great at this. Our minds are subconsciously ma-
nipulated by many heuristic habits that bias our assessments. We believe far too strongly
in �rst impressions. We give undue weight to recent experiences, we are prone to falsely
equate what is familiar with what is desirable, etc. But it is a fantasy to think that \data"
on its own can save us from these cognitive traps. Our minds are instinctual and persuasive
storytellers, and we can spin a story around ambiguous data about as easily as we can in a
vacuum. For this reason, we should not wholly replace the challenging process of subjective
assessment with blind reliance on noisy metrics.

So what can a non-algo designer reasonably hope to extract from a disclosed algo design
and an account of the research behind it? Hopefully at least a few things like: 1. a sense
of what kind of scienti�c processes the designers employ, 2. an understanding of what goals

10



the designers are prioritizing, 3. an awareness of the assumptions the designers are making,
4. a rough idea of the extent and level of competency of the research, and last but certainly
not least: 5. an opportunity to collaborate more directly with the designers and aim their
expertise more e�ectively at achieving particular goals.

Many would argue that the potential downsides of publicly disclosing algo designs out-
weigh the value of these kind of assessments and collaborations. The most common argu-
ments given are 1. competitors can copy a disclosed algo design and 2. a disclosed algo
design is more vulnerable to being \gamed" by other traders. In a direct sense, 1. is only
a problem for the company providing the algo, not its customers. But indirectly, one might
worry that copied designs will remove incentive for innovation. This concern is circular
though, because the incentive for innovation is already weak in the absence of a broadly
accessible and reliable mechanism for gauging algo quality.

Concern 2. above is directly relevant to the clients of an algo, and it is certainly worth
taking seriously. Let's think about what it means for a design to become \gameable" due to
public information about its development. The process would be: someone reads the newly
public information, combines it with their own current knowledge, and comes up with an
idea to behave di�erently in their own trading algorithms and potentially improve their own
outcomes at the expense of the disclosed algo's customers. If this worked to a signi�cant
extent, it would have to either 1. essentially work against a large portion of agency algos
or 2. involve a step of approximately identifying the disclosed algo (or something very like
it) in the wild. We must keep in mind here that someone looking to exploit the disclosed
algorithm will not know what side/stocks/amounts the algo is actively trading on any given
day. This is private information that comes from the customers and is never disclosed.

If 1. is true, then the role of the algo design disclosures is likely coincidental. General
knowledge about how agency algos typically work is available already, and the set of people
across the industry who have direct experience working on or around agency algos is not
small. If 2. is true, then the disclosed algo is doing something unusually noticeable, either
in its general behavior or in its response to conditions that a would-be gamer manufactures.
In this case, the design has a problem, and should be �xed. Not disclosing the design is a

imsy protection in this case. Whatever the noticeable and exploitable behavior is, it could
also be discovered by someone searching for such a thing, even if that person didn't know
ahead of time what exactly to look for. In our age of big data and fast technology, such an
unguided search could take longer than a targeted one, but perhaps not that much longer.

11



If we assume that any serious exploit will be eventually discovered, then our goal should
be to discover and patch it ourselves as quickly as possible. Publication of our algo design
and research supports this goal, as it enables us to collaborate with others more freely, and to
vet our design through a larger audience. This is the same approach that is used to produce
strong encryption algorithms like AES (the advanced encryption standard) that we all rely on
to secure our sensitive communications (e.g. using our credit cards for online transactions).
The design of AES is fully public and has been subject to extensive public vetting from the
cryptologic research community for decades. The sensitive information encrypted via AES
is protected by secret key values which are unknown to would-be attackers, but everything
about how the secret keys and the sensitive information is combined to form an inscrutable
ciphertext is known.

We believe that everyone up the telephone chain from the algo black box would be better
served by a translucent box - and that's why we commit to publishing the research that goes
into the design of our algorithms, as well the design of the ways we evaluate performance.
The rest of this paper will detail the process we used to design the scheduling component of
our new trading algorithm, as well as the twists and bumps we encountered along the way.

Our design process is heavily driven by the desire to learn as much as we can from
historical market data, which is available to us in a quantity that is orders of magnitude
greater than our own live trading data will represent for a long time. By evaluating potential
features of the design extensively on historical market data, rather than solely relying on

12



noisy A-B tests in live trading, we can improve our design much more quickly and more
robustly. Historical market data can tell us a lot about how the market is likely to react to
common situations. Once we've developed such information, we can start to model how the
market may react to potential choices that our algo may make. Finally, we can derive the
choices that our algo will make by comparing the modeled market reactions to the available
choices and choosing the path that our modeling predicts will be most favorable for our
execution goal.

Our execution goal is formulated mathematically in a later section, but its simpli�ed
version is basically: \don't shit where you eat." In this context, it means: try not to pay
more as a buyer becauseyou have pushed the price up. This is close in spirit to minimizing
\impact," but lots of people use that term without converging on a single mathematical
meaning, so we want to be a little more speci�c. Its most direct meaning is also not quite
what we care about - we may not care if our activity moved the priceafter we were mostly
done trading. We care more about how our activity so far drives up the prices we will incur
in our remaining activity. In other words, we care about prices over time proportionately to
how much we trade at those times. So we will seek to model how our behavior a�ects prices
at a forward marching sequence of times, and we will de�ne a cost function that ultimately
calculates: according to our model of market reactions, what's the additional premium we
expect to pay as a buyer due to our own actions driving up the stock over our sequence
of trades? Naturally, we design the algo to choose the actions that minimize our estimate
of this cost function, subject to accomplishing the desired total amount of trading over the
time period.

There is one big question this paper will not answer. It is a question we get asked a lot:
by would-be investors, colleagues in the industry, potential clients, and even our families
on occasion. \Just me give me ballpark," they start, \how much money do you think you
can ultimately save your clients?" We sigh. It's obvious why everyone wants an answer. It
would certainly make our lives easier if we just gave an answer. We could hedge it in all the
typical ways: \This is just a projection but..." and\If you assume ..." But frankly, there's
currently no scienti�cally responsible way to answer this question. We could point to the
paper \Trading Costs" by Frazzini, Israel, and Moskowitz2, which estimates AQR's average
market impact over many years of trading data to be roughly 9 bps, with about 1.26 bps of
that being \transitory" impact that reverses soon after AQR's trading activity completes.
This seems to suggest at least that trading costs overall do represent a signi�cant term in the
overall costs of institutional investing. But how much of this term is inherent, and how much
is attributable to di�erences between algos? We don't know. It's very hard to know! We
will work diligently to combat the confusion of market noise in our own iterative research
process, and we are optimistic that we will be able to achieve reasonable and compelling
estimates of how much better each version of our algo is compared to the last. But we won't

2available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3229719

13



be able to compare ourselves to other algos because, well, *cough*, those algos are hiding in
their black boxes.

So we can't tell you how much money we would save for a potential client. Because
we don't know how much money their current brokers are really saving/costing them. And
they don't know either. And isn't that unsettling? If we know that this cost term may
be big enough to matter, and we know that we don't know how to control it with a noisy
competition between black boxes, isn't that a good enough reason to force the boxes open?

It's great that a person doesn't need to become an expert in portfolio management,
algorithmic trading, settlement and clearing, market microstructure, and more in order to
accomplish an investment goal of \growth or something." And it's true that most investors
have no interest in going down the telephone chain and understanding how their goal gets
translated into something more concrete at each layer. But shouldn't that translation be
knowable in principle? Shouldn'tsomeonebe empowered to check that each lower layer is
doing a reasonable job of embodying the higher layer's wishes?

We think so. But we don't expect that other algo designers will shed their black boxes
anytime soon. We'll just be here in the meantime, tinkering away in public, and happy to
hear your thoughts on what we're building.

2 Introduction: A High-Level View of Proof 's Trading

Algorithm

The work of designing a trading algorithm is basically the work of �lling in the empty space
between a set of low level trading tools and a high level objective. This work has several
stages, not necessarily performed in the following order:

ˆ Determining the set of trading tools: deciding which venue connections and order types
to use

ˆ Developing a framework for assembling the tools into an algorithm

ˆ Fleshing out the high level objective into more detailed metrics

ˆ Developing a framework for comparing di�erent versions of the algorithm according to
the desired metrics

An intuitively appealing and perhaps common approach is: assemble as many trading
tools as possible, throw them into an algorithm that mostly follows the \gut" of experienced
traders, decide on a standard TCA metric like slippage vs. vwap or slippage vs. arrival, and
then A-B test di�erent versions of the algo on real trades, choosing whichever one performs

14



best on the TCA metric (probably defaulting to no changes if the performance di�erence is
too small or seems unreliable).

There are several things about this approach that are unsatisfying, however. The data
science part here - the A-B testing - is being asked to work in highly sub-optimal conditions.
The �nal outcomes on price are very noisy, and the sample size of live trading performed by
the algo is relatively small. This makes setting the criteria for adopting changes to the algo
very fraught. If the criteria set a higher bar for robustness and clarity of results, precious
few proposed changes will clear the bar. But if the criteria set a lower bar, noise is likely to
usher in a bloat of questionable \upgrades."

Another unsatisfying aspect of this approach is its distribution of labor between human
intuition and quantitative science. Both are certainly needed! However, it's important to
use humans for what humans are good at, and use data science for what data science is good
at. Not only do we have data science working in sub-optimal conditions here, but we also
have humans working in sub-optimal conditions. The search space of \ways that one could
assemble underlying tools into a full algo" is vast and high-dimensional. This is not a great
environment for human intuition to operate blindly in. An overreaction to this would be
to fully replace human intuition with a fancy machine learning algorithm to quickly churn
through the vast, high-dimensional search space. This would be a �ne idea, except for the
still unsolved noisy evaluation problem. If there isn't an extremely reliable way to compare
alternatives, searching through too many possibilities in an automated fashion is a recipe for
drowning in coincidences.

What we need instead is a way for humans and machines to work together to combat the
noisy evaluation problem on a smaller, well-structured search space, with much more data at
their disposal. Machine learning works best when it is employed to �nd simple structures on
large data sets. So to set ourselves up for success, we'll look for ways to use human intuition
to intelligently limit and structure the search space, as well as ways to enlarge the available
data.

The �rst structure we impose is a modular and hierarchical one. Our algos consist of
several layers of logic, each with distinct responsibilities. The highest layer decides how much
of the total order to delegate to each of our underlying strategies, each of which represents a
distinct execution goal. The decisions at this layer are controlled by parameters set by the
client entering the order, as well as by our research which informs limits we place on how
much volume a given strategy can or should successfully handle.

So far, we have designed three underlying strategies. One that we refer to as \VWAP"
is intended to minimize slippage to the market's volume-weighted average price over the
lifetime of the order. Another is a \liquidity seeker" whose goal is to �nd relatively big
blocks. The third is an \impact minimizer" whose goal is to trade somewhat steadily while
attempting to minimize the price impact of that trading activity.

Within each strategy, there is a \scheduler" layer whose job it is to decide how much to

15



try to trade over medium-term timescales, which are roughly �ve to twenty minutes long.
These decisions will be made with the context of how much has traded so far, how much
of order's lifetime is left, as well as historical information like volume curves, and real-time
information derived from market data or from the outcomes of recent actions taken by the
algo. We can think of a scheduler as an oracle who answers questions like, \given what I
know now and what's left to trade in my order, how much should I trade over the nextX
minutes?" Naturally, the answer to this question should depend on the execution goal, e.g.
whether your goal is to get close to VWAP or to minimize price impact, etc. This is why
each strategy has its own kind of scheduler.

Below the scheduler layer is a \tactical" layer whose job it is to decidehow to trade the
amount that the scheduler has prescribed for the next time interval, where time intervals
are of randomized lengths typically within the range of �ve to twenty minutes. This is the
layer that interacts with venues, decides when to post and when to take, which order types
to use, etc.

In structural terms, we feel our intuition about market microstructure is very well-tuned.
Accumulated across the Proof team, we have several decades of experience focusing on market
microstructure in US equities. For the low level tactics of our algos, we are comfortable
starting with a curated mix of passive and aggressive tools that we believe should serve our
purposes well, including tools we ourselves heavily contributed to at IEX. We do expect to
continually re-evaluate and improve upon these choices over time.

We have focused our research e�orts so far at Proof on the layer where we expect our intu-
ition is weaker and the room for improvement from a scienti�c approach may be considerable:
the scheduler layer. The research behind our initial VWAP scheduler design is already pub-
lished in a separate white paper (available at https://www.prooftrading.com/docs/vwap.pdf).
In this paper, we present the research behind our initial design for the impact minimizing
scheduler.

Having narrowed our goal for now to the design of a scheduler whose mandate is to
\minimize impact" conditioned on completing a certain total amount of volume, our next
task is to 
esh out what we mean by \impact" and how we intend to go about measuring
and minimizing it. Intuitively, we would like to say that impact represents how much a price
movesdue to our trading activity. But this is not something we can directly measure, as we
don't know what would have happenedwithout our trading activity. However, we can use
various normalization techniques to try to reduce the confounding in
uence of wider market
forces. We'll discuss such techniques more extensively in the next section.

Our basic notion of a price movement will be a relative one, and will be localized to ten
minute time intervals at a time. We'll view the regular trading day in a given symbol as
divided into 39 ten minute intervals, the �rst being from 9:30 am to 9:40 am, and the last
being from 3:50 pm to 4 pm. For each of these intervals, we'll consider the relative price
movement as the ratio of last trade price occurring in that interval over the last trade price

16



occurring in the previous interval. (For the �rst interval, the denominator will be the �rst
trade price occurring in that interval.) LP i will represent the last trade price occurring in
interval i , and the ratios we'll be interested in are of the form LP i

LP i � 1
. The evolution of the

price over the course of the day can then be tracked by successively multiplying these ratios.
It can be more convenient, however, to express these ratios as exponentials so that this price
evolution process corresponds to addition in the exponent. In other words, for each interval
i , we de�ne the value � i such that:

LP i

LP i � 1
= e� i :

(i.e. � i is the natural logarithm of the price ratio). In this notation, we can express the
price at the end ofi intervals the initial price multiplied by a single exponential term where
the exponent is a sum of the �rsti values of �:

LP i = e
P

j< = i � j FP;

whereFP denotes the �rst price of the day (the opening price). We note that price move-
ments that revert back to the starting price correspond to sequences of �i values that sum
to zero.

Having de�ned the � i values that we use as measures of \impact" (subject to additional
normalization techniques), our next task is to consider how we describe and study the rela-
tionship between the actions our algo will take and the times series of �i values. We could
try to study this solely using data collected from our own trading activity, where we clearly
know what actions we took. However, even with normalization techniques that reduce the
noise of general market movements on the �i values for a given stock, it is very di�cult to
detect and model meaningful relationships between various quoting and trading behaviors
and the time series of �i values. This is a strong motivation for bringing in historical market
data as resource, rather than relying solely on the small sample sizes of our own trading.

Leveraging historical market data requires us to de�ne a translation between our own
actions and features of trading and quoting activity that we can identify and study in the
historical market data that we have. This is a bit challenging, as historical market data does
not link or identify parties. We have price, size, and timing information about individual
quote and trade events in historical market data, but no information about the underlying
parties. Analogously, when our algo is taking actions in the market, our counter-parties will
not have information that identi�es us (at least in a direct sense. It is certainly part of our
design challenge to avoid being identi�ed indirectly by taking actions that are too distinctive
or identi�able, etc.)

For each time interval and symbol in our historical market data, we can compute the
value of � representing the exponent of the relative price change, and we can also compute
various features of the trading and quoting behavior in that same interval, or in the interval(s)

17



preceding it. (Ultimately, we choose to consider the behavior in the current interval and the
one interval preceding it, so that we can model reversion e�ects from one interval to the
next.) For example, we can compute things like: the total volume traded in the interval, the
percentage of that volume that traded at the prevailing NBB/NBO/midpoint, the average
size quoted at the NBB and NBO, etc. Overall, the set of features we could potentially
compute is comically large, including such things as \the number of odd lot trades happening
in an even numbered second at a price that is within13 of the spread from the NBB and ...
."

The trick, of course, is deciding what features we should focus on. In de�ning features of
trading behavior to study, we have several goals:

ˆ The features should be likely to be related to price movements.

ˆ The features should be simple and common enough to enable robust modeling in noisy
data sets.

ˆ The features should capture the important e�ects of our algo's trading that are \visible"
to the market.

ˆ The features should be reliably related to our scheduling decisions.

The �rst two goals concern thetractability of the data science problem we will be tackling
as we try to model the relationship between features and our �i time series. In general,
more complicated features and models require more and more data to train reliably, and are
less robust in the face of changing conditions. Hence we prefer simple features taking on
commonly occurring values, so we can collect lots of examples in training data. Naturally, we
also need these features to actually have a meaningful relationship with the price sequences
we are representing with � i values.

The last two goals concern therelevanceof the data science problem we will be tackling.
If the features we study don't really capture the relevant e�ects of our trading, or aren't
things we can at least somewhat control through our scheduling decisions, they won't be
a good foundation for the decision-making process of our impact-minimizing scheduler. As
an extreme example, we could tautologically de�ne �i as a feature, and viola! It perfectly
correlates with � i ! But clearly this does not provide us with any insight about how to
schedule our trading volumes to minimize our in
uence on �i 's. However, if we have a
feature like \the volume of trades that occurred at the NBO as a percentage of average daily
volume," it is reasonable to expect that this might have a meaningful relationship with price,
and that we have some control over how our trading contributes to it. We might use what
we can learn about the relationship between this feature and price to help make scheduling
decisions, as we might project that scheduling a certain amount of volume to buy will lead
us to take a certain portion of that volume at the NBO, and hence may in
uence �i in

18



accordance with the typical relationship between our feature and �i . Once we have a way
of predicting how our scheduling decisions a�ect features, and a way of predicting how those
features a�ect price movements, we can start to combine these to predict the expected impact
of our decisions, and hence meaningfully compare di�erent schedules we might choose. Then
we can ultimately choose a schedule that minimizes our expected impact, conditioned on
completing the target amount of volume in a speci�ed time frame.

There are some possible pitfalls here that we must remain keenly aware of. One is
the classic \correlation does not equal causation." We are basically hypothesizing that our
scheduling decisions lead to quoting/trading behavior, which then causally impacts price
movements. However, the relationships we �nd between behavioral features and price move-
ments in historical market data are correlations, and it's possible they are not causal in
the way that we intend. It's also worth noting that the two 
avors of goals for our feature
selection, tractability and relevance, are in tension to some extent. When we think about
trying to capture everything about our own actions that might drive an impact in price, it's
easy to come up with a very long list of possible features. It might feel intuitive from this
perspective to throw in everything that we can, hoping that the union of all the things we've
thought of does a good job of covering all the bases. The level of noise in price movements,
however, is likely to render this approach untenable. Instead, we'll need to carefully budget
and capture as much relevance as we can in a small package of features in order to give
us a chance at building robust and meaningful models. All of these challenges (and more!)
make feature selection very fraught. As a result, we expect to be continually revisiting and
attempting to improve this stage of the research as we iterate on our algorithm's design.

19



For a candidate set of features, we'll investigate questions like: how strong is the apparent
relationship between these features and the time series of �i values? How strong is the
evidence for the apparent relationship? How stable does the relationship appear to be over
time and market conditions? How reasonable is it to hypothesize that the relationship is at
least somewhat causal and will hold up as a model for how our actions may in
uence prices?
How directly do the features capture trading behaviors that are linked to our scheduling
decisions?

Let's skip ahead a bit and assume we have reasonable answers to those questions for some
set of features. Not great answers - we don't want to oversell it - but reasonable ones. How
will we go about building a scheduler from this? At this point, let's assume we have what
we think are reasonable models for how the features of trading and quoting behavior we've
selected a�ect price movements, and a reasonable model for how our scheduling decisions
drive our contributions to those features. What's still missing though, is a model of the wider
market's contributions to the features. We could try to predict the market's contribution
based on the information we have historically and in real time, but we shouldn't really expect
to predict a single value with con�dence. For the very basic feature of trading volume, we do
have some initial research on predicting this, and it is used in our existing VWAP algo (see
https://www.prooftrading.com/docs/vwap.pdf for more details). But for di�erent features,
especially more complex ones, developing meaningful prediction models is likely to be a
separate new and challenging research task. Also, connecting multiple layers of models
together in order to output �nal scheduling decisions can be precarious, and may lead to
ampli�cation of discrepancies between the models and reality.

For now, we prefer to take a more agnostic approach and model the contribution of the
rest of the market as a random process. What this will boil down to is averaging over market
conditions in our historical market data to determine the expected impact of our actions,
and not allowing ourselves to be overly swayed by real time information that is very noisy.
We can think of the wider market as a random process that serves up market conditions
for each interval, and we'll try to compute the expected costs of our possible scheduling
decisions while accounting for this randomness. In other words, we can try to live with a
high degree of unpredictability in wider market behavior, rather than immediately trying to
tame it with further prediction models that output a single guess for a state of the market.

Whatever kind of random process we choose as our mental model of the wider market is
going to be heuristic and deviate signi�cantly from reality. In choosing our model of general
market operation, we face similar tensions to what we face in choosing the features for our
model of price impact. If we choose a more complex model, it can potentially capture more
and more of the nuances of real market conditions and their evolution. If we choose a simpler
model, we are more likely to be able to �t its parameters in a robust and meaningful way
with a reasonable amount of historical market data. To navigate this tension, we begin with
a very simple model that is still capable of modeling the basic market dynamics that we

20



know we want to represent: price impact and price reversion. We discuss this in detail in
section 6.

Assembling all of these pieces together, we have: 1) a �rm de�nition of features of trading
behavior that we believe can causally in
uence prices, 2) a model of how our scheduled
trading activity contributes to these features, 3) a model of how general market behavior
contributes to these features, and 4) a model of how these features contribute to price
movements. Using these in combination, we can begin to project the expected costs of our
possible scheduling decisions.

We should note here that the meaning of \expected" is the probabilistic one - where
we average over the costs of di�erent possibilities weighted by the probabilities we assign
to them occurring. This kind of averaging can violate our intuition about what \expected"
means in a colloquial sense. For example, a purchased lottery ticket will either turn out to
be worth nothing in the likely event that it wins, or worth a lot in the unlikely event that it
wins. Averaging these two possibilities yields a modest positive expected value which doesn't
correspond to either scenario in isolation. When we talk about mathematical \expectations,"
we aren't talking about what we \expect" to occur in any particular case. We're talking
about a weighted average over the possible cases for an event that is nondeterministic. This
weighted average corresponds more closely to reality when we think about many repetitions
of the same circumstances, sampled over and over again with fresh randomness. But for any
one particular instance, the expectation may be pretty far o� from what precisely happens.
Ironically, that may even be \expected!"

In designing trading algorithms, we are working in a setting where we will be facing the
same kind of circumstances over and over again, so making decisions based on what's best
\on average" seems quite reasonable. However, even our computations of averages are likely
to be somewhat o� due to noise, especially when we are trying to compute averages for
market conditions or actions that may be rare. This is a reason to place strong guard rails
around the possible scheduling decisions we consider with this methodology. The quality of
our projections of expected costs for possible scheduling decisions is likely to degrade quickly
as we deviate further from common, relatively low participation rates. Hence this kind of
modeling approach should not be relied up to evaluate proposed schedules that include heavy

21



trading 
ow for which it is hard to �nd a wealth of proximate examples in historical market
data.

This means that we need one more piece in place to translate the outputs of our research
process into a scheduler for our algo: we need a constrained set of possible schedules to
consider and compare. One constraint is clear: we should only consider schedules that
complete the total amount of trading we want to complete by the end of the allotted time.
We can also add caps on how much is scheduled in any particular time interval, say as a
percentage of the average daily volume (ADV) for that symbol. If we want, we can make
such caps a function of what time of day it is, or of the historical volume curve at that time,
etc.

Once we have a set of schedules that we want to consider and we feel reasonably good
about our ability to project expected costs for the schedules in this set with our research-
generated models, it seems we are in good shape! Easy, we might say. Let's just compute the
expected cost for each of the reasonable schedules in our set, and then follow the schedule
that has the lowest expected cost. But not so fast, there is one remaining challenge.

The challenge is that the set of \reasonable" schedules is still too large for us to exhaus-
tively compute the expected costs for each schedule in it. As an illustrative example, imagine
that we divide the regular day into thirty-nine time intervals, each lasting ten minutes, and
for each interval we consider four possible amounts that we could schedule. Even if the last
interval becomes determined because we have to just schedule whatever we have left at that
point, this still represents 438 = 276 possible schedules. That's just way too much for even
modern computers to handle. A general rule of thumb for gauging what computations are
feasible is: 210 is nothing, 220 is something, 250 is going to require specialized hardware, 280

is probably out of reach, and 2272 is about how many atoms there in the universe. So we'd
like to keep our computational burdens down in the 220 range or below if possible.

Luckily, there are ways to �nd the schedule with the lowest expected cost without needing
to compute the expected costs for every plausible schedule. One such way is called \dynamic
programming." The main reason this works for our task is that the lowest cost schedule we
are looking for has a lot of convenient properties. Namely, if the lowest cost schedule trades
X units of volume in the lastY time intervals, than however it accomplishes that corresponds
to the lowest cost way to tradeX units in the last Y time intervals. This means we can break
the problem into smaller pieces, solve for the lowest cost options for those individual pieces,
and then begin to assemble our solutions back into a full solution to the total scheduling
problem. This allows us to dramatically reduce the computational resources required to �nd
our solution. We go through this in more detail in Section 7.

This is especially important because we would like our cost estimates for proposed sched-
ules to be able to depend on real-time information. In particular, when we are making a
scheduling decision for the next time interval, we can know information about our recent
trading that we couldn't have known at the beginning of the day. We can know, for instance,

22



how our most recent volume translated into the features that we are tracking. For a feature
like \the amount of volume trading at the NBB," for example, our contribution to that
feature varies not only as a function of how much volume we schedule, but also as a function
of how quickly we are able to pick up passive volume and how frequently we end up needing
to the cross the spread. These are not things we will know with certainty until the interval
is over. If we can reasonably compute new cost estimates for proposed schedules of the re-
maining volume in real-time, we can take advantage of information like this once its known
to us, and potentially make choices for the upcoming interval that are better informed. This
will only work if the computation of the future schedule with the lowest expected cost is fast
enough to be continually performed on the 
y during the trading day.

In the subsequent sections of this paper, we will describe the research underpinning our
choices for each piece of the infrastructure described above. This represents the initial form
of the scheduler we have designed to try to minimize price impact, subject to completing
a speci�ed target amount of volume. We only invoke this scheduler for volumes that are
capped to a certain limit of the symbol's ADV, in order to avoid relying on our models in
cases beyond our perception of their reliability. We expect this is merely the preliminary
form of an algorithm that we will quickly iterate on, and merely the beginning of a long
research agenda targeted and understanding price impact and how to minimize it for our
trading.

3 Data Normalization

As of the time of this writing (fall 2021), there are over 10,000 symbols trading on the US
equities markets. Hence the sample size of historical market data available for each individual
symbol is several orders of magnitude smaller than the sample size available if we accumulate
over all (or at least many) symbols. For modeling price impact, we suspect that the level
of noise in price data will be nearly overwhelming, and we'll need all of the samples we can
possibly get. Hence, we will try to accumulate data over symbols for developing and training
our models.

Doing this requires several strategic decisions about how to normalize data so that it can
be meaningfully combined across symbols. Di�erent symbols may trade at very di�erent
price levels, in very di�erent amounts. To make things a bit more apples-to-apples, we'll
always look at size quantities relative to the ADV in a given symbol. In other words, instead
of considering raw counts of shares, we'll divide those counts by the ADV and consider
percentage of the ADV as our primary unit of size. [Technical note: we calculate ADVs as
averages over the set of trading days included in the last 20 calendar days. We've considered
slight variations on this, like using 20 trading days or 30 calendar days, etc., and we've not
found any compelling reasons to prefer one over the others.]

23



For prices, the � i values we have de�ned above already provide some normalization, as
they consider relative price changes over time intervals rather than absolute dollar amounts.
However, di�erent symbols will exhibit di�erent levels of variance in their typical � i values.
General market trends will also contribute to � i values, making them unlikely to be mean 0
over time periods where the market was generally up or generally down. Since our purpose
here is to understand price impact at a more localized level, we choose to take all of the �i

values for a given symbol over a given time period in our data set and center them at 0 by
subtracting their collective average from each of the individual values. We also divide by
their collective standard deviation in order to force the standard deviation of the normalized
values to be 1. In other words, we are taking a set of �i values that has an arbitrary
mean and standard deviation and forcibly scaling and adjusting it to have a mean of zero
and standard deviation of one. We do this for the �i 's of each symbol individually, over
time periods of 1 week at a time. When we compute the mean and standard deviation of
a collection of � i values, we weight the individual values according to the notional value
traded in each interval. (It would also be reasonable to weight all of the values equally for a
given symbol in a given week, but we generally weight things by notional value unless there
is a compelling reason to weight them otherwise.)

24



Performing this normalization on � i values has several consequences. One is that we have
forfeited any ability to model price impact at time scales of a week or longer. In exchange,
we have greatly reduced the confounding in
uence of wider market trends that obscure the
targeted e�ects we are attempting to model. Since here we are focused on designing a
schedule for intra-day behavior, we think this is a worthwhile trade-o�. But doing this kind
of forcible transformation to make things mean zero and standard deviation one is not the
only way we could try to reduce confounding factors. Another approach would be to use
our distilling techniques, developed in our prior white papers on the topic of distilled impact
(available at: https://www.prooftrading.com/#section-research). We use these distillation
techniques currently to attempt to reduce the in
uence of wider market forces in our TCA
calculations. However, the amount of noise that can be removed through these methods
remains smaller than we would like it to be. We do not think that our distillation methods
are currently strong enough to normalize data across symbols for the tough task here of
training models relating noisy price data to behavioral trading features. We hope this will
change in the future as we improve our distillation techniques, and our impact modeling
tools.

Once we have normalized data for each symbol and each time period in our data set, it
remains to decide how to aggregate data across symbols. Here again, we choose to weight
each data point proportionally to its notional value. This ensures that data for symbols
whose trades cumulatively represent larger notional value will contribute more strongly to

25



our modeling than symbols whose trades cumulatively represent smaller notional value. In
essence, we are behaving here as if we expect that our own trading will ultimately be dis-
tributed across time and symbols similarly to the distribution of notional value across the
market.

4 Feature Selection and Modeling Price Movements

Deciding which features to compute, test, and ultimately keep as part of a model is typically
the hardest and most important part of any data science research. This project was no
exception. In fact, our feature selection process spanned well over a year, involved a lot of
false starts, and was ultimately re-invigorated by the launch of our VWAP algo. Watching
our �rst algo's tactics in action spurred a few clearer ideas for how we might best capture our
low-level trading actions in simple features that we can also compute on historical market
data.

Our algo's tactics involve two main behaviors: posting and taking. When we cross the
spread and take as a buyer, for example, we trade at the current NBO price. When we
post as a buyer, we join the current NBB price. Both of these actions, though in di�erent
ways, potentially signal to the wider market that there is additional buying interest and may
ultimately drive prices up. To try to capture the e�ect of our taking behavior, we de�ne a
feature on trade data that accounts for spread-crossing trades. To try to capture the e�ect
our posting behavior, we de�ne a feature on quote data that accounts for events where size
increases at the NBB/NBO.

More speci�cally, we start by labeling each reported trade as occurring at the prevailing
NBB, at the prevailing NBO, or neither. For each 10-minute time interval and each symbol,
we sum up the volume of trading that occurred at the NBB, as well as the amount of trading
that occurred at the NBO. We compute the di�erence of these two sums, and then divide by
the ADV to translate it into our normalized volume units. This gives us one number whose
sign represents which side of the NBBO has experienced more trading, and who magnitude
re
ects the size of the di�erence, relative to the ADV.

26



Our approach to evaluating candidate features involves grouping together time period/symbol
combinations that have similar values for the features in training data and then seeing how
the (notional value weighted) average � value of these behaves as a predictor for the � value
of fresh testing data with those feature values. This grouping process is a very basic kind of
model that we can evaluate directly without having to do slightly fancier things like �tting a
linear function or a decision tree to the relationship between the features and � values. This
grouping will only work well if we scale and round values in such a way that the groups con-
tain su�cient sample sizes, but also don't con
ate too many disparate situations and hence
obscure the features' in
uence. This can be a tricky balance to achieve, but we can try a
few di�erent roundings/groupings and see which ones provide better quality predictions on
the testing data. As a starting point for our volume at the NBB/NBO feature, we'll round
to the nearest 0:1% of ADV. In other words, the nearest multiple of 0:001� ADV .

We also suspect that the di�erence between a value of, say 2:0% ADV and a value of
2:1% ADV for this feature may be less meaningful than the di�erence between a value of
0:1% ADV and a value of 0:2% ADV. As the values get higher in magnitude, we are likely
to see sample size at each 0:1% increment drop o� sharply, and the meaningfulness of these
distinctions degrade. To reduce the clutter and overhead in our computations over large
swaths of historical data, we capped our feature value at 1:5% ADV, grouping together all
observations at +1:5% ADV and above, and grouping together all observations� 1:5% ADV
or below. With this cap in place as well as the rounding to the nearest multiple of 0:1%
ADV, we can ultimately view this feature as an integer ranging from� 15 to 15. We call this
feature \volume pressure," and we think of it as trying to capture the \pressure" exerted on
price by the (im)balance of trading volume happening at the NBB/NBO.

27



We also de�ne a feature that we compute from the top-of-book quotes within each 10-
minute time interval for each symbol. First, we use the top-of-book quotes to construct
the NBBO at each moment in time. In this process, we construct the sizes available at the
NBBO as well the prices, and we keep track of all size changes to the NBB or NBO, even
when they do not represent price changes. Each time the size at the NBB increases while
the price stays the same, we label this as a \bid joining event," and we de�ne the size of the
event to be the amount of increase in the size available at the NBB. Similarly, each time the
size at the NBO increases while the price stays the same, we label this as an \ask joining
event," and we de�ne the size of the event to be the amount of increase in the size available
at the NBO.

For each time interval and symbol, we sum up the sizes of all the bid joining events and
all of the ask joining events. We compute the di�erence of these two sums, and divide it by
the ADV. This gives us a number whose sign indicates which is more popular to join, the
NBB or the NBO, and whose magnitude re
ects the size of the di�erence. A couple things
to note here: �rst, we do not consider the establishment of a new price level to be a \joining"
event. Second, we do not track events where size decreases. For example, if the NBB stays
at the same price but the size available changes from 2 lots to 6 lots, then to 4 lots, then
to 7 lots, there are two NBB joining events in that sequence: the increase from 2 lots to 6
lots, and the increase from 4 lots to 7 lots. These will contribute a total of +4 + 3 = +7 lots
to the sum of NBB joining events. We do not track the decreases or whether they represent
trades or cancellations, etc.

Like our volume pressure feature, the di�erence between the two resulting sums (nor-
malized by ADV) is rounded and capped. This time, we round to the nearest third of a
percent of ADV, i.e. 0:00333: : : ADV. (We rounded this a bit more coarsely because the

28


